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ABSTRACT: Molecular dynamics at the atomistic scale is increasingly being used to predict
material properties and speed up the material design and development process. However, the
accuracy of molecular dynamics predictions is sensitively dependent on the force fields. In the
traditional force field calibration process, a specific property, predicted by the model, is compared
with the experimental observation and the force field parameters are adjusted to minimize the
difference. This leads to the issue that the calibrated force fields are not generic and robust enough
to predict different properties. Here, a new calibration method based on multiobjective Bayesian
optimization is developed to speed up the development of molecular dynamics force fields that are capable of predicting multiple
properties accurately. This is achieved by reducing the number of simulation runs to generate the Pareto front with an efficient
sequential sampling strategy. The methodology is demonstrated by generating a new coarse-grained force field for polycaprolactone,
where the force field can predict the mechanical properties and water diffusion in the polymer.

■ INTRODUCTION

Molecular dynamics (MD) simulations predict the physical
properties of materials by examining the movements of atomic
particles as a result of the forces acting upon them. To simulate
these forces, MD utilizes different types of force field models,
mostly empirical. Many force fields are generated for specific
materials to capture the interactions between the predefined
types of atoms. For instance, the embedded atom method
(EAM) potential for nickel only captures the nickel−nickel
interactions,1 and the modified embedded atom method
(MEAM) potential for nitinol only captures nickel and
titanium interactions.2 Usually, a force field is calibrated by
comparing one predicted property with the corresponding
experimental observation and the model parameters are
adjusted to minimize the difference. There are also more
generic full-atom force fields that model different atom types
such as the Dreiding force field for generic use cases.3 These
generic force fields have been further developed for material-
specific simulations, such as optimized potential for liquid
simulations (OPLSs),4,5 Groningen molecular simulation
program package (GROMOS) for biomolecular systems,6

Chemistry at Harvard Macromolecular Mechanics
(CHARMM) for biomolecules,7 and assisted model building
and energy refinement (AMBER) for proteins, nucleic acids,
and carbohydrates.8 These force fields are useful for modeling
general physical interactions of molecules. Similarly, applying
such force fields to specific material property calculations may
yield inaccurate results if they are calibrated based on a
different type of property. There is a great need for improved

and robust force field models that are capable of predicting
different properties simultaneously and accurately.
Several methods have been used to generate and calibrate

force fields for specific use cases. Typically, the calibration
methods rely on the experimental values of energy to
parameterize the force field.9,10 This can be cumbersome due
to experimental limitations and expenses. Quantum mechanics
calculations such as density functional theory (DFT) have also
been used in developing force fields.11 DFT models also need
to be calibrated, and the associated errors can be propagated to
force fields. In general, the calibration of force fields is an
optimization process, where the parameters of the force fields
are tuned to minimize the difference between the predicted
property from the MD simulation and the reference value.12

When multiple properties need to be considered simulta-
neously, this process becomes the multiobjective optimization.
Very limited work has been done for multiobjective force field
calibration. Ragasa et al. used a multiobjective optimization
approach to develop a force field for magnesium oxide (MgO),
where thousands of simulations were run first and a Gaussian
model was then applied to select the best force fields to
generate the Pareto front.13 For computationally expensive
MD simulations, more efficient sampling methods for
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optimization are needed. In this research, a multiobjective
Bayesian optimization approach is proposed to counter this
computational challenge. A sequential sampling strategy is
taken in Bayesian optimization, where a surrogate model is
constructed to approximate each objective function. In parallel,
an acquisition function is also constructed and used to decide
the sample of parameter values to run the next simulation. The
surrogates and the acquisition function are updated in each
iteration of the search. Compared to traditional sampling,
Bayesian optimization methods can significantly reduce the
required number of simulations. Single-objective Bayesian
optimization was recently applied to parameterize force fields
for dissipative particle dynamics.14 General Bayesian reason-
ing15,16 has also been used to parameterize force fields. The
potential of multiobjective Bayesian optimization for force field
parameterization, however, has not been explored. The
multiobjective Bayesian optimization approaches can efficiently
identify Pareto solutions17,18 and help improve the robustness
and versatility of parameterization for predicting multiple
properties simultaneously.
Herein, the multiobjective Bayesian optimization is utilized

to calibrate model parameters for multiple properties. We
demonstrate this method by generating a coarse-grained (CG)
force field of polycaprolactone (PCL) that is capable of
predicting both the modulus of elasticity of the polymer matrix
and the water diffusivity in the matrix. To simulate the tensile
test and the diffusion of water through PCL effectively using
MD, it is important to use a force field model parameterized
accurately for both processes. Traditional MD with full-
atomistic force fields can only simulate very fast processes at
the time scale of nanoseconds with a femtosecond time step.
Full-atomistic MD is computationally expensive for polymer
solids due to the number of atoms and bonds, as well as
angular and dihedral interactions. For example, an 80 kDa
molecular weight chain of PCL contains 12 618 atoms per
chain. Coupling this with nine chains and simulating the
diffusion process in the nanosecond range result in over
physical interactions in 1 ns. To counter these length- and
time-scale challenges, a coarse-grained (CG) approach is taken
to improve the simulation efficiency by reducing the number of
particles per chain and increasing the time step.
CG force fields offer an alternative to MD simulations of

full-atomistic, united atom, and finitely extensible nonlinear
elastic (FENE) models. CG force fields generally remove all of
the hydrogens and capture several large atoms as one particle.
One such force field, the MARTINI force field, is a generic CG
model geared for polymer and biomolecular simulations.19 Not
only can this model reduce the number of particles but it also
allows for a time step increase of up to 40 fs. This force field
provides the nonbonded particle interactions. However, it
must be calibrated through changing bond, angle, and dihedral
interactions. Calibration has been done for several materials,
including water,20 proteins,21,22 polystyrene,23 polyethylene,
and poly(tetrafluoroethylene).24 Calibrations were done based
on material properties such as the elastic modulus,25 glass-
transition temperature,26 heat capacity,26 temperature trans-
ferability,23 and viscosity.27 MARTINI has also been used to
analyze systems such as the stability of sodium dodecyl sulfate
films with oil28 and in aqueous solutions,27 to simulate the
sintering process of oxide fuel cells,29 and to predict adhesion
mechanics30 and structure−property relationships.31 Here, a
MARTINI CG force field for PCL will be used to illustrate the
new calibration process.

■ METHODS
In traditional force field calibration, the optimization
procedure is taken to minimize the difference between one
predicted property from simulation and experimental measure-
ment. In the proposed approach, multiple properties are
considered simultaneously, and a more efficient sequential
sampling-based multiobjective Bayesian optimization approach
is introduced.
The force field calibration process in our approach consists

of two stages, as outlined in Figure 1. First, the multiobjective

optimization is formulated based on the properties of interest
for a given application. MD models are set up. After some
initial simulations to build the initial surrogate models,
additional executions of MD are guided by sequential
sampling. The optima or Pareto solutions are identified.
Second, statistical analyses and validation are performed within
the Pareto solutions. The solution set is narrowed down to a
final force field recommendation with the considerations of
uncertainty and robustness.
In multiobjective optimization, there are conflicts between

the multiple objectives. That is, choosing the optimal solution
for one objective requires the compromise of others. For
instance, when the minimization of the two objectives is
sought, as illustrated in Figure 2, it is not possible to find a
solution such that both objectives are minimized. There is a
subset of solutions on the Pareto front, or Pareto solutions,
where improving one objective always requires the sacrifice of
the other. The Pareto solutions are nondominated solutions
such that it is impossible to improve one objective without

Figure 1. Proposed calibration process to generate molecular
dynamics force fields based on multiobjective optimization.
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negatively impacting the other. Nondominated solutions on
the Pareto front are better than or dominate the ones in the
other region. Seeking these Pareto solutions is the main goal of
multiobjective optimization.
Sampling efficiency is important for obtaining the Pareto

solutions, especially for the computationally expensive MD
simulations. The number of samples drawn that belong to
dominated solutions needs to be minimized. Here, we use a
multiobjective Bayesian optimization approach to search for
Pareto solutions. Bayesian optimization algorithms search
optima on the surrogate models of the objective functions,
where a sequential sampling strategy is taken based on some
utility or acquisition functions. For each iteration, a new
sample location is selected so that the acquisition function is
maximized, and the surrogates are updated with the inclusion
of the additional sample point. This sequential sampling
procedure is the key to reduce the total computational time by
predicting the next representative sample of parameters for the
multiobjective optimization. It provides an efficient method for
obtaining the Pareto solutions and selecting the optimal force
field model.
Selecting an acquisition function to guide the sequential

sampling in multiobjective Bayesian optimization to find the
Pareto solutions is important. Here, we use the expected
improvement matrix (EIM) as the acquisition function that
was proposed by Zhan et al.,18 where each element in the EIM
is the expected improvement for each sample point with
respect to each objective, and an aggregated scalar value based
on all elements in the EIM is used to guide the sampling. Note
that the traditionally expected improvement acquisition
function32 only supports single-objective optimization. There-
fore, such new definitions of acquisition functions are needed
for multiobjective Bayesian optimization.
In our implementation, Gaussian process models are used as

the surrogates of objective functions. Each Gaussian process
surrogate is built with a zero-order polynomial regression
model and a Gaussian correlation kernel. The implementation
was based on the design and analysis of computer experiment
(DACE) toolkit for MATLAB.33 The initial guesses of all
hyperparameters in the Gaussian process surrogates are 0.1
with lower and upper bounds of 0.001 and 300, respectively.
The hyperparameters are updated for each iteration. The
optimization process is outlined in Figure 3. First, the Latin
hypercube sampling (LHS) method is used to generate initial
samples spanning the design space. For each iteration, the
algorithm advances by finding the next best parameters by
maximizing the acquisition function. The evaluations of the
acquisition function are based on the surrogates and do not
require expensive simulations. Once the next set of parameters
are determined, the MD simulations are executed to calculate
the objectives. The surrogates are updated with the results

from the new sample. This algorithm repeats until a specified
number of Pareto solutions are obtained.

■ RESULTS AND DISCUSSION
Coarse-Grained Force Field Model Parameterization.

The MARTINI force field has been used to simulate PCL and
has been parameterized mimicking the full-atomistic OPLS all-
atom force field.34 It has been analyzed to verify the radius of
gyration, end-to-end distance, temperature, and solvent
transferability.34 However, this force field is not parameterized
to simulate the diffusion process for PCL. For MARTINI force
fields, first, hydrogens are removed and four heavy atoms need
to be combined into one MARTINI particle.19 The reduction
of particles to the PCL monomer is shown in Figure 4a,c. The
four carbon atoms on the left are combined and modeled with
a hydrophobic particle (C1). The next two carbon atoms and
the two oxygen atoms on the right are combined and modeled
by a site of intermediate hydrophilicity (Na). This coarse
graining is similar to the force field developed by Raman et
al.34 Therefore, each PCL monomer can be represented as 2
particles instead of 18. Compared to the full-atom model
shown in Figure 4a and the united atom model shown in
Figure 4b, the MARTINI force field has much fewer particles.
The interaction between the C1 and Na particles is
parameterized with three parameters, as shown in Figure 4d.
They are the bond length and two bond angles. To simulate
water in MARTINI coarse graining, four water molecules are
combined into one P4 particle. The time scale for coarse-
grained simulations can also be modified. The time step for the
simulations can be increased from 1 fs utilized in full-atomistic
MD up to 40 fs.
The three energy terms for the MARTINI force field are

Ubond, Uangle, and Upair, as defined below.

= −U r K r r( ) ( )bond b b
2

(1)

is the energy between two bonded particles, where r is the
distance between the particles, rb is the bond length
corresponding to the minimum energy, and Kb is the force
constant.

θ θ θ= { − }θU K( ) cos( ) cos( )angle 0 (2)

is the energy of three particles associated with the angle θ
between the two bonds, where θ0 is the angle corresponding to
the minimum energy and Kθ is the force constant.

Figure 2. Illustration of the different regions in a multiobjective
optimization problem.

Figure 3. Flowchart detailing the optimization algorithm used to
calculate the Pareto front for the molecular dynamics force field.
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is the energy between two particles that is not captured by
Ubond or Uangle, where ϵ and σ are the energy and distance
constants, respectively, and are specified for each pair of
MARTINI particle types;19 rc is the cutoff distance; and S(r) is
the smoothing function that ramps the energy and force
smoothly to zero past the cutoff distance.
The force constants and minimum energy distances and

angles can be specified to be more suitable for specific
polymers. For the Na−C1 monomer configuration, there are
two angles that exist in the PCL structure. The C1−Na−C1
angle results in Kθ1 and θ1, and the Na−C1−Na angle results
in Kθ2 and θ2 for each angle energy equation. When constant
nonbonded parameters are assumed, the total energy of the
system

∑ θ θ= = θ θU U f K r K K( , , , , , )
i

itotal b b 1 1 2 2
(4)

can be calculated as a function of the variables for the bonded
interactions between C1−Na and the two angles.
When generating the force field for PCL, the input variables

(Kb, rb, Kθ1, θ1, Kθ2, θ2) need to be optimized to predict specific
characteristics of the polymer accurately. Since the ultimate
goal is to simulate the degradation of the biodegradable
polymer, the modulus of elasticity (E) and the Fickian
diffusion coefficient of water in the polymer matrix (D) are
examined.
Molecular Dynamics Property Prediction. To perform

the MD simulations, a large-scale atomic/molecular massively

parallel simulator (LAMMPS), developed at Sandia National
Laboratory, is used.35 The nonbonded interactions are defined
per the MARTINI force field,19 with bonded interactions
defined as per the algorithm. Berendsen thermostats and
barostats are used for all simulations, with 1 and 4 ps damping
parameters, respectively. All barostats and thermostats are run
at 0 atm and 300 K. To calculate the two properties of interest,
two simulations are utilized. The first simulation determines
the modulus of elasticity, while the second simulation
calculates the diffusion coefficient of water in the polymeric
matrix.
For the first simulation, the geometry is first initialized with

nine chains of 701 monomers, each resulting in 80 kDa chains.
Initially, a soft force field with a 0 angstrom cutoff for the
nonbonded interactions is used to allow the chains to cross,
coupled with a constant volume (NVT) simulation. This will
ensure a realistic, entangled polymer matrix and reduce the
overall equilibration time. The system is deformed to a cube of
the experimental density of PCL and allowed to equilibrate for
200 000 time steps with a time step of 20 fs, while the
nonbonded force field cutoff is slowly increased. The soft force
field is replaced by the MARTINI force, and constant pressure
and enthalpy (NPH) and Langevin thermostats are then used,
with incremental time steps of up to 20 fs. The simulation
reduces the energy of the system. Following the equilibration
procedure similar to Fan et al. and Awasthi et al.,36,37 the entire
cube is then equilibrated using a constant pressure (NPT)
simulation for 40 ns to ensure the total energy stabilization. It
has been observed that the total energy tends to stabilize such
that the absolute value of the slope of the total energy with
respect to time for a 10 ns sample is less than 1 kcal/(mol ns).
This occurs after approximately 20 ns of equilibration. From

Figure 4. MARTINI coarse-grained force field for PCL monomer in comparison with (a) full-atomistic model and (b) united atom model. (c)
MARTINI coarse-graining procedure for the individual monomers and (d) parameters required for bond and angle interactions.

Figure 5. (a) Tensile test and (b) diffusion test results for the force field parameters, as defined by Raman et al.34
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here, a tensile test is performed at a 1 fs time step to extract the
modulus of elasticity. Keeping two of the three dimensions at
constant pressure, the constant temperature system is
deformed along the third dimension at a strain rate of 0.1
ns−1 until a strain of 0.05 is reached. The modulus of elasticity
(E) is extracted from the data by

σ = ϵ +E C (5)

where σ is the stress, ϵ is the strain, and C is a constant. An
example of the test results is shown in Figure 5a.
For the second simulation, the geometry is first initialized

with nine chains of 701 monomers each, as well as water
particles. To determine the number of P4 water particles to
include in the simulation, water vapor absorption from existing
experimental results was examined, which gives a range of 80−
252 molecules depending on external water pressure.38 From
the study of Harrison et al.,39 the number of liquid water
molecules is approximately 121. For the diffusion simulation
using nine chains, 31 P4 particles are used resulting in 124
water molecules. The rest of the initialization is the same as the
one in the first simulation. However, instead of a tensile test, a
diffusion test is performed. To calculate the Fickian diffusion
coefficient of water through the polymer matrix, the Green−
Kubo relation is used, which states that the diffusion coefficient
is proportional to the slope of the mean-squared displacement
(MSD), as

= ⟨Δ ⟩D
n

r t
1

2
( )2

(6)

where D is the diffusion coefficient, n is the number of
dimensions, and ⟨Δ2r(t)⟩ represents the MSD.40 The
simulation with a time step of 1 fs undergoes a constant
energy and volume (NVE) simulation for 0.5 ns. The MSD is
then calculated for the water molecules, and then the diffusion
coefficient is determined based on eq 6. An example of the
MSD evolutions is shown in Figure 5b.
Multiobjective Bayesian Optimization. For calibration,

the modulus of elasticity and Fickian diffusion coefficient are
used to optimize the force field parameters (Kb, rb, Kθ1, θ1, Kθ2,
θ2). This is done by minimizing the relative errors of the
calculated E and D terms with respect to the experimental
results. The objective functions are

i
k
jjjjj

y
{
zzzzzθ θ= − ×θ θf E K r K K E

E
( ( , , , , , ) )

100
1 b b 1 1 2 2 0

0 (7)

i
k
jjjjj

y
{
zzzzzθ θ= − ×θ θf D K r K K D

D
( ( , , , , , ) )

100
2 b b 1 1 2 2 0

0 (8)

where E0 and D0 are the experimental values for the properties
of PCL. These two objective functions will then be minimized
simultaneously in the multiobjective optimization algorithm.
The modulus of elasticity for pure PCL with a molecular
weight of 80 kDa has been found to be around 429.1 MPa,41

and similar results for an 84.5 kDa sample have been found to
be around 440 MPa.42 For the purposes of optimization, an E0
of 429.1 MPa for 80 kDa is selected. The Fickian diffusion
coefficient of water in PCL is calculated to be 2.00 × 10−7

cm2/s for a 23.2 kDa sample of PCL.38 This was investigated
with an 80 kDA sample and found to have diffusion
coefficients for sorption and desorption of 4.93 × 10−7 and
5.60 × 10−7 cm2/s, respectively.43 These values have been
averaged for a D0 of 5.265 × 10−7 cm2/s.

Our optimization problem is designed with six design
variables and two objectives. To determine the ranges of
design variables Kb, rb, Kθ1, Kθ2, θ1, and θ2, the force field
parameters calculated by Raman et al.34 are taken as the
reference values, where Kb is 5.975 kcal/(mol Å2) and the
values for Kθ1 and Kθ2 are 4.780 kcal/mol. Here, the range for
Kb is set to be 3−7 kcal/(mol Å2), and the ranges of Kθ1 and
Kθ2 are 2−7 kcal/mol, which encompass the reference values
and do not overconstrain the simulation. To select the range
for rb, the maximum is based on the maximum bond length for
the coarse-grained molecule, 4.18 Å. A minimum value of 3.5 Å
is selected to encompass the Raman et al. value of 4.15 Å.34

The values of θ1 and θ2 are constrained within a range of 90−
180°. The LHS method is used to generate 30 initial samples
spanning the design space, as outlined in Table 1. Each MD

simulation was run on eight processors in parallel. After the
initial 30 simulations of tensile and diffusion tests, the
sequential sampling drives the simulations for a total of 10
days.

Selection and Classification of Final Force Fields. In
this example, after 338 samples, or MD simulation runs, 11
Pareto solutions are identified, as shown in Figure 6. From the

11 candidate force fields on the Pareto front, a final selection
needs to be made. The Pareto solutions can be examined first
and narrowed down by using the maximum allowable error.
Solutions that cause too much deviation from the experimental
observations on any of the properties need not be considered
further. One advantage of the multiobjective approach is that
alternative solutions are available and users can select based on
their own criterion. For instance, if the accuracy of the mean
value predictions is important, a force field that results in
balanced predictions of different properties can be selected.

Table 1. Minimum and Maximum Values Used for the
Design Space of the Parameters for the Multiobjective
Optimization Algorithm

design variable minimum value maximum value

Kb (kcal/(mol Å2)) 3 7
rb (Å) 3.50 4.18
Kθ1 (kcal/mol) 2 7
θ1 (deg) 90 180
Kθ2 (kcal/mol) 2 7
θ2 (deg) 90 180

Figure 6. Eleven Pareto solutions are obtained from a total of 338
simulation runs. The red lines outline the allowable error ranges,
where four Pareto solutions (1−4) are selected for further analysis.
The corresponding two units of monomers are also shown at their
minimum energy states.
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Alternatively, if the robustness of predictions is preferred, a
model with the minimum variances can be selected. The
selection process is demonstrated as follows.
As shown in Figure 6, the 11 Pareto solutions do not

dominate each other. Reducing the error for diffusion
coefficient prediction increases the error of elastic modulus
prediction. The maximum allowable error for diffusion is
selected to be 10%, while the maximum allowable error for the
modulus of elasticity is selected to be 20%. These percentages
are selected so that more weight is put on the diffusion process
since our ultimate goal is to predict the biodegradation of PCL.
Four Pareto solutions fulfill these conditions, which are labeled
1−4 in Figure 6. The values of force field parameters for these
four Pareto solutions are given in Table 2.

To further characterize each Pareto solution, we compare
the simulation predictions from the four Pareto solutions with
additional experimental data for the temperature dependency
of the diffusion coefficient. The diffusion of the water particles
through the polymer matrix is expected to follow the Stokes−
Einstein such that

πη
=D

k T
r6

B

(9)

where kB is the Boltzmann constant, η is the viscosity, r is the
radius of the equivalent spherical particle, and T is the
temperature.44 This implies that the diffusion of the water
particles will be linearly related to the temperature of the
system such that

=D A T1 (10)

where A1 is a constant. The experimental results from Yoon
et al.38 showed that A1 is within a range between 0.02 × 10−7

and 0.40 × 10−7 cm2/(K s). The additional diffusion
simulations are performed for a period of 40 ns within a
temperature range of 300−340 K and are displayed in Figure

7a. The slope of the linear fitting is extracted from each of the
four force fields. The results are listed in Table 3. The slopes of
Pareto solutions 1−3 fall within the experimental bounds,
while Pareto solution 4 is above the maximum range of the
experimental results. Therefore, Pareto solution 4 is unable to
capture the temperature dependency of the diffusivity of water
accurately.
The time dependency of the modulus of elasticity is also

applied for validation with additional experimental data. It is
known that45

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ

É

Ö
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= −E E a

T
T

1a
m (11)

where Ea is the modulus of elasticity at absolute zero
temperature, Tm is the melting temperature, and a is a
constant. This implies that the modulus of elasticity also
follows a linear relationship with temperature such that

= − +E A T E2 a (12)

where A2 is a constant.
46−48 Experimental results showed that

the range of A2 is from 6.0 to 7.5 MPa/K.49,50 Additional
simulations are also performed for the modulus of elasticity
with different temperatures. The results are shown in Figure
7b. Linear regression is applied, and the slope is extracted for
each of the four Pareto solutions. The results are also shown in
Table 3. Pareto solutions 1, 2, and 4 do not fall within the
experimental range of A2. However, Pareto solutions 1 and 2
are within a 2% error of the lower bound of the experimental
results, and Pareto solution 4 is within a 5% error of the upper
bound of the experimental results. Conversely, Pareto solution
3 falls far outside the range. Therefore, Pareto solution 3 is
unable to capture the temperature dependency of the modulus
of elasticity accurately.
To compare the newly generated force fields with others, the

temperature-dependent parameters, the modulus of elasticity,
and the diffusivity were also predicted with MD simulations
based on the PCL force field generated by Raman et al.34 This
MARTINI force field was parameterized according to the
energy characterization of OPLS. The results are also listed in
Table 3. The predicted A1 coefficient 0.0997 × 10−7 cm2/(K s)
is within the experimental bounds, whereas the A2 coefficient
2.2124 MPa/K falls outside the experimental bounds. The
force field by Raman et al. is able to predict the temperature
dependency of the diffusion coefficient but not the modulus of
elasticity. In contrast, Pareto solutions 1 and 2 are able to
predict the temperature dependency for both the diffusion
coefficient and the modulus of elasticity.

Table 2. Force Field Parameters for the Four Selected
Pareto Solutions for Further Analysis

property Pareto 1 Pareto 2 Pareto 3 Pareto 4

Kb (kcal/(mol Å2)) 3.0027 3.0001 3.0001 6.9972
rb (Å) 3.5034 3.9594 4.1798 4.1799
Kθ1 (kcal/mol) 2.9797 3.4553 4.8098 2.8628
θ1 (deg) 180.00 154.61 179.71 179.99
Kθ2 (kcal/mol) 2.0076 4.037 2.0001 4.9926
θ2 (deg) 119.75 151.00 124.35 102.22

Figure 7. (a) Diffusion coefficient and the (b) modulus of elasticity of the four Pareto simulations for different values of temperature ranging from
300 to 340 K.
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Additional 13 simulations for each of the four Pareto
solutions are performed to calculate the diffusion coefficient
and modulus of elasticity. These results are then displayed as
histograms in Figure 8. The resulting mean coefficients, as well
as the sample standard deviation, are calculated and tabulated
in Table 4. The modulus of elasticity predicted from the force
field by Raman et al. was 660.0 MPa. Compared to the
experimental result of 429.1 MPa,41 there is a 54% error. In
contrast, the average values predicated with the Pareto
solutions 1, 2, 3, and 4 have errors of 16, 5, 6, and 10%,
respectively. The Fickian diffusion coefficient of water in PCL
predicted from the force field by Raman et al.34 is 0.75 × 10−7

cm2/s. In comparison with the experimental result of 5.265 ×
10−7 cm2, the error is 86%. The mean values of the diffusion
coefficient predicted with the four Pareto solutions have errors
of 59, 80, 72, and 15%, respectively. It is seen that the force
field developed by Raman et al.34 has a less accurate prediction
of diffusion than that of the mechanical property. In contrast,
Pareto solution 4 has well-balanced predictions of both
properties, which is the best choice if both properties are
important. Therefore, providing users multiple options of
Pareto solutions allows them to choose based on the different
needs of property predictions.
When the robustness of the property calculations is

preferred, the variances associated with the predictions need
to be considered. Statistical tests can be performed to
quantitatively compare variances. In this example, Pareto
solutions 1 and 2 have the lowest variance in both property
predictions. An F-test can be done to determine if the variances
for either property calculation differ between the two. If so, the
minimum variance solution can be chosen to ensure the
precision when performing the diffusion simulation or modulus
of elasticity calculation. The null hypothesis (H0) is set as σ2

2 =

σ1
2 for both tests. The alternative hypothesis (H1) is set as σD,2

2

< σD,1
2 for the diffusion test and H1 as σE,2

2 < σE,1
2 for the

modulus of elasticity test. The hypotheses result in p-values of
0.3309 and 0.1185, respectively. That is, there is a 67%
confidence that the variance for the diffusion coefficient
estimation from the force field of Pareto solution 2 is less than
that of Pareto solution 1. In addition, there is an 88%
confidence that the variance for the estimated modulus of
elasticity from the force field of Pareto solution 2 is less than
that of Pareto solution 1. Therefore, if precision is the most
desired attribute of the force field, Pareto solution 2 could be
the optimal choice, especially for the cases of extrapolation
when the simulation is to predict properties under conditions
that are different from those in the available experimental data.
T-tests can be performed to more quantitatively examine the

accuracy of the predicted modulus of elasticity in comparison
to the experimental result E0. For these tests, the null
hypothesis, H0, is E = E0 and the alternative hypothesis, H1,
is E ≠ E0. The resulting p-values for Pareto solutions 1, 2, 3,
and 4 are 0.00025, 0.06162, 0.09088, and 0.01895, respectively.
This implies that Pareto solution 3 has the highest confidence
that the force field can accurately predict the modulus of
elasticity. Therefore, if the modulus of elasticity calculation is
of the only concern, Pareto solution 3 is recommended.
However, if there is a desire to have a balance between
accuracy and precision for the modulus of elasticity, Pareto
solution 2 is recommended instead.
Similarly, T-tests can be performed to quantitatively examine

the accuracy of the predicted diffusion coefficient. For these
tests, the null hypothesis, H0, is D = D0, and the alternative
hypothesis, H1, is D ≠ D0. The resulting p-values for Pareto
solutions 1, 2, 3, and 4 are 10−12, 10−14, 10−12, and 0.0053,
respectively. This implies that the force fields of Pareto

Table 3. Slope Constants of Property Values Versus Temperature for Diffusivity and Modulus of Elasticity for the Four Pareto
Solutions38,49,50

property experimental Pareto 1 Pareto 2 Pareto 3 Pareto 4 Raman et al.

A1 × 107 (cm2/(K s)) 0.02−0.40 0.2414 0.1026 0.3280 0.7150 0.0997
A2 (MPa/K) 6.00−7.50 5.8833 5.9356 5.0060 7.8524 2.2124

Figure 8. Plots showing the histogram of the data for Pareto 1−4 for the (a) diffusion results and (b) the modulus of elasticity results.

Table 4. Mean and Standard Deviation for Diffusivity and Modulus of Elasticity for 13 Simulations at 300 K for Pareto
Solutions 1 and 241,43

property experimental Pareto 1 Pareto 2 Pareto 3 Pareto 4 Raman et al.

D × 107 (cm2/s) 5.265 2.1692 1.0463 1.4635 4.4960 0.7536
σD × 107 (cm2/s) 0.4123 0.3624 0.4730 0.8152 0.2240
E (MPa) 429.1 358.3151 449.0832 455.1388 382.9861 660.0027
σE (MPa) 49.7011 34.9532 51.0702 61.3500 69.4932
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solutions 1−3 are unlikely to accurately calculate the diffusion
coefficient and will have to be calibrated further with the
appropriate time step if used. There is higher confidence that
the force field of Pareto solution 4 can accurately predict the
diffusion coefficient without requiring further time step
calibration for a 1 fs time step. If a different time step is
used, the diffusion coefficient calculation should be calibrated
as with the MARTINI force field, given that different time
steps will affect the time-dependent diffusion coefficient
calculation.19 Therefore, if the diffusion coefficient calculation
at 1 fs without performing calibration is most important, then
Pareto solution 4 is recommended.
The above discussions show that trade-offs between the

choices of Pareto solutions are needed in different scenarios
and applications. The final choice should be selected based on
the application-specific criteria for the accuracy and robustness
of property predictions. It has been demonstrated that
considering additional attributes such as the temperature
dependency of properties can be useful in making choices.
Statistical tests can help in the decision-making process.
To further examine the effectiveness of the multiobjective

Bayesian optimization algorithm in sequential sampling, a
traditional random sampling approach is also taken to sample
338 force fields from the same design space based on the LHS
method. The diffusion coefficient and modulus of elasticity are
similarly predicted by running the simulations. The simulation
runs, which result in relative errors that are less than 50% for
the two predicted properties from the Bayesian optimization
and the LHS method, are plotted in Figure 9. The Bayesian
optimization algorithm obtains 81 samples that have a less than
50% error compared to 33 samples based on the LHS method,
which means that our new approach leads to a higher
probability of obtaining samples that minimize both objectives.
Convergence and diversity are two common criteria to

measure the quality of Pareto fronts. Convergence measures
how close a Pareto front converges to the true optima of both
objectives and minimizes the infeasible region, as illustrated in
Figure 2. Diversity measures how representative the Pareto
front is for all possible optima in the widespread objective
values. Here, the modified hyperarea difference (MHD) and
modified overall spread (MOS) quality metrics17 are used to
quantitatively measure convergence and diversity, respectively.
The MHD is defined as

∑= − −
=

−

+x x y yMHD (( )( ))
i

n

i i i n
1

1

1
(13)

for n sorted Pareto solutions with objective values (xi, yi)’s,
where xi < xi+1, yi > yi+1 (∀i = 1, ..., n − 1). That is, the MHD

measures the area beneath the Pareto front. The MOS is
defined as

= − −x x y yMOS ( )( )n n1 1 (14)

with sorted values (xi, yi)’s. Smaller MHD and larger MOS are
better. The MHD and MOS values of the Pareto front of the
338 samples obtained by the Bayesian optimization algorithm
are 0.023 and 0.186, respectively. The MHD and MOS values
of the Pareto front obtained by the LHS method are 0.0422
and 0.945, respectively. The Bayesian optimization method is
able to identify the Pareto solutions more exhaustively in the
desirable region with small prediction errors for both
properties, instead of spending simulation time in the region
where large errors for either property occur.

■ CONCLUSIONS
This paper outlines a new methodology using multiobjective
optimization to calibrate force fields based on multiple
properties of interest. The methodology includes an efficient
sequential sampling through multiobjective Bayesian optimi-
zation to identify Pareto solutions and statistical analyses for
force field selection with the criteria of accuracy and
robustness. The Pareto solutions provide users the options
to choose based on the application-specific criteria and
preferences. The method has been applied to generate new
MARTINI force fields for PCL. The developed force field is
capable of predicting both the modulus of elasticity and
diffusion coefficient of water through PCL accurately.
The proposed multiobjective Bayesian optimization method

for force field calibration has been demonstrated with six
design variables and two objectives. The ability to extend it to
higher dimensionality and allow for an increase in design
variables and objectives is needed. Increasing the number of
design variables leads to an exponential growth of the number
of samples required to establish reliable Gaussian process
surrogate models,51 which is not desirable when simulations
are expensive.
Not only the number of design variables affects the efficiency

of Bayesian optimization, but the number of samples to
construct the Pareto front also increases as the number of
objectives increases.14 For instance, the two-dimensional (2D)
Pareto front in this study was constructed with 338
simulations. Increasing to three objectives requires us to
construct a three-dimensional (3D) surface as the Pareto front.
The number of samples will also grow exponentially, with more
objectives being considered, even though the proposed
multiobjective Bayesian optimization approach is able to
better handle higher dimensionality in objectives than other
multiobjective optimizations. One way to remedy this curse of

Figure 9. Samples that have a less than 50% error for both objectives for the (a) Bayesian optimization and (b) Latin hypercube sampling methods.
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dimensionality would be to examine the possibility of
parallelizing MD simulations and sampling. This would
increase the required computational resources but decrease
the overall time. A caveat to this would be new acquisition
functions that allow for sequential batch sampling for
parallelization.
In this paper, only a coarse-grained molecular dynamics for

polymers is examined. Though coarse graining is useful for our
particular application, full-atom MD models for polymers are
still necessary for capturing the electrostatic effects for many
applications. For full-atom MD models of PCL, there can be a
total of five types of atoms in the monomer: a backbone
carbon, a carboxyl group carbon, two carboxyl group oxygens,
and a backbone hydrogen. With no restrictions, this will result
in 120 nonbonded interactions and 4 independent charges for
a total of 244 design variables for interatomic potentials.
Simplification needs to be made to use more generic force field
parameterization as a starting point, and only specific
interactions in the overall property are utilized for PCL.
Simplification can also be done on the electrostatic forces, and
only four independent charges are included in the design
variables. Therefore, when the full-atom simulation is applied
for polymers and proteins, the number of parameters to be
calibrated can exhibit quadratic growth. This will increase the
number of samples necessary to form the Pareto front and thus
the time to run the calibration process. Prior knowledge of
force field interactions may reduce the overall number of
design variables, making the development of full-atom polymer
and protein force fields more efficient.
The force fields for metal-based applications, such as EAM,

rely on nonbonded interactions between all of the atom types
defined in the force field, as well as electron cloud density. For
an EAM force field that captures m number of atom types,
there will be m(m + 1)/2 nonbonded interactions, embedding
functions, and electron cloud contribution functions, which
lead to a total of m(m + 1)/2 + 2m functions. Since each
interaction and function require two design parameters, each
force field requires approximately m(m + 1) + 4m design
parameters, which may be reduced based on prior knowledge.
An example of reduction is adding in a third atom type into an
existing EAM potential that is parameterized for two atom
types. This would require an additional 3 nonbonded
interactions, 1 embedding function, and 1 electron cloud
contribution function, resulting in a total of 10 design
parameters in the optimization process.
This method has been shown to work efficiently with two

properties as the objectives in the optimization. Adding more
objectives will increase the number of simulations that are
necessary to form a credible Pareto solution set. Future work
will need to further improve the efficiency of sampling for force
fields with more parameters and more properties.
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